

National Biosolids Partnership Webcast

"BIOSOLIDS 101"

Fundamentals of Practice

October 31, 2012

WELCOMING REMARKS

Sam Hadeed

Biosolids Program Manager Water Environment Federation National Biosolids Partnership Alexandria, VA

WEF Residuals & Biosolids **Committee Staff Liaison**

shadeed@wef.org

NBP's Commitment to Excellence in Biosolids Management

Starting in January 2010, NBP began offering a series of "no charge" quarts webcasts devoted to general biosolids management and technical topics of interest to water quality and biosolids professionals:

Carbon Footprint Implications from Biosolids Management Practices

- Advances in Solids Reduction Processes
 Combined Heat and Power Generation Opportunities at Wastewater Treatment Facilities
- Charting the Future of Biosolids Management: Forum Findings on Trends and Drivers
- Implementing the New SSI MACT Standards Issues and Challenges Ahead
 Terminal Island Renewable Energy LA's Biosolids Slurry and Brine Injection
 Project
- Renewable Green Energy from Biosolids POTW Case Studies to Achieve Net Energy Production
- When Opportunity Knocks, How Can Municipalities and POTWs Partner with the Biofuels Industry Thermal Hydrolysis Comes to America: DC Water's Blue Plains Digestion Project
- Compliance and Testing Requirements to Meet the Sewage Sludge Incineration MACT Standards Part 2

1.75 Professional Development Hours for this webcast

http://www.wefnet.org/nbp/

NBP - WEF Resources to Navigate Biosolids Management

www.biosolids.org - Web Page and E-Newsletter

www.wef.org - Biosolids Channel of Access Water Knowledge

WEF 2013 Residuals and Biosolids Specialty Conference May 5-8 Nashville, TN

http://www.wef.org/ResidualsBiosolids/

- Description of talks:
 - Science behind the federal biosolids regulation and risk assessment, 40 CFR 503 – Rhonda Bowen
 - History of the 40 CFR 503 Tom Crawford
 - How the 503 gets implemented Mike McFarland
- > Goal: To introduce participants to the basics of the federal biosolids regulation with a focus on land application

What are Biosolids?

- <u>Digested</u>, semi-solid residuals from primary and secondary treatment – the solids & bacteria that are removed during the treatment process
- Typically use "biosolids" to designate *treated* solids, "sludge" for untreated solids
- Rich in plant nutrients (N, P and trace metals)
- Class B Biosolids reduced pathogens, but still present
- Class A Biosolids virtually pathogen-free

Activities Regulated by 503

- Land Application
- Compost, pellets, soil blends distributed or sold in bags or in bulk
- ▶ Surface Disposal
- ▶ Incineration*

Pollutants are Evaluated for Three **Biosolids Management Scenarios**

- Incineration
- Disposal in biosolids lagoons (i.e., surface disposal units)
- Application to agricultural land

Four Steps

- Hazard Identification:
 - Can the pollutant harm human health and/or environment?
- Exposure Assessment:
- Who is exposed; how are they exposed; how much?
- Dose-response Evaluation:
 - If person, animal or plant exposed what happens?

 - Risk reference doses daily intake, over lifetime
 Cancer potential values likelihood of exposed to develop cancer
- Risk Characterization:
 - What is the likelihood of an adverse effect
 - Risk = Hazard x Exposure

Biosolids Task Force

- Determine pollutants of concern
- Develop risk assessment methodologies
- Determine risk based pollutant limits
- Determine management practices
- Issue comprehensive, risk based regulations (Part 503 Rule)

Identification of 200 Pollutants

- Human exposure and health effects
- Plant uptake of pollutants
- Phytotoxicity (adverse effects on plants)
- Effects in domestic animals and wildlife
- Effects in aquatic organisms
- Frequency of pollutant occurrence in biosolids

50 Pollutants Selected

- Probability pollutant would be toxic when exposure occurred
- Likelihood exposure to humans and the environment would occur via biosolids use or disposal
- Availability of toxicity and exposure data
- Best professional judgment

Further Refinements

- EPA conducts worst-case hazard profile assessment
- Science Advisory Board approves general risk assessment methodology
- EPA conducts risk assessments on most exposed individual (MEI)
- Peer review and public comment further refinements
- ▶ EPA conducts National Sewage Sludge Survey
- EPA revises risk assessment highly exposed individual (HEI), field data, more realistic assumptions and NSSS

Highly Exposed Individual

- 70 years HEI produces 59% of food from home garden (vs 100% for MEI)
- Biosolids amended soil contains max cumulative loading of each pollutant for 70 years
- Food harvested has plant uptake slope (geomean) taken from field studies (vs highest plant uptake for greenhouse studies
- Food consumption apportioned based on age and group (vs max ingestion all ages and groups) over 70 year life

Land Application

- Biosolids applied by a "lifestyle" farmer to either pasture or cropland
 - >once every two years
 - ➤agronomic rates
- Climate and soil data to characterize the environmental setting and characterize exposure
 - >meteorological
 - ▶climate
- ■9 farm resource regions
- ■41 climate regions

POLLUTANT	CONTROLLING PATHWAY	PATHWAY SCENARIO
Arsenic Cadmium Lead Mercury Selenium	3	Child Eating Biosolids
Molybdenum	6	Animal Eating Feed
Copper Nickel Zinc	8	Plant Phytotoxicity

TNSSS Design

- □ Designed to provide nationally representative results
- □ Statistically selected 74 POTWs to represent 3,337 POTWs that met the following criteria:
 - > Flow greater than 1 MGD
 - > Secondary treatment or better
 - > Located in the contiguous United States
- □ Peer-reviewed both survey design and analytical methods
- □ Sampled treated sewage sludge

TNSSS Design (cont)

Collected 84 samples at 74 POTWs in 35 states August 2006 – March 2007

Measured 145 analytes, including:

- o 97 pharmaceuticals, steroids and hormones
 - 72 antibiotics and drugs (Rx and OTC)
 - √ 25 steroids and hormones
- o 28 metals
- o 11 polybrominated diphenyl ethers (PBDEs)
- o 4 polycyclic aromatic hydrocarbons (PAHs)
- o 3 inorganic ions
- o 2 semivolatile organics

TNSSS Findings – Occurrence

Wide variation in minimum and maximum levels

Wide variation in detection frequency:

- o 16 analytes (11%) not detected
- o 129 analytes (89%) detected in at least one sample
- o Most non-pharmaceuticals were detected in more than 50 of 84 samples
- o Pharmaceuticals/steroids/hormones ranged from 0 to all 84 samples
- 42 analytes detected in 100% of samples (3 pharmaceuticals; 3 steroids & hormones; 36 metals, inorganic ions, organics)

Analyte	Use	# Detects (total=84)	Concentration Range Dry-Weight (ug/kg)
Flame Retardants			
BDE-47 (Tetra)	Reduces flammability	84	73 – 5,000
BDE-99 (Penta)		84	64 – 4,000
BDE-153 (Hexa)		84	9 – 410
BDE-209 (Deca)		83	150 – 17,000
Pharmaceuticals			
Azithromycin	Antibiotic	80	8 - 5,205
Diphenhydramine	Antihistimine	84	37 – 5,730
Caffeine	Psychoactive stimulant	39	65 – 1,100
Carbamazepine	Anticonvulsant	80	9 - 6,030
Cimetidine	Ant-acid	74	4 - 8,330
Ciprofloxacin	Antibiotic - strong	84	75 – 40,800
Fluoxetine	Antidepressant	79	10 – 3,130
Ibuprofen	Anti-inflammatory / Analgesic	54	99 – 11,900
Miconazole	Antifungal	80	7 – 9,210
Tetracycline	Antibiotic	81	38 – 5,270
Triclocarba	Antibacterial	84	187 – 441,000
Triclosan	Antibace	79	334 – 133,000

Analyte	Use	# Detects (total=84)	Dry-Weight (ug/kg)	
Steroids / Hormones				
Campesterol	Plant sterol	84	2,840 - 524,000	
Cholestanol	Cholesterol derivative	84	3,860 - 4,590,000	
Coprostanol	Cholesterol derivative	84	7,720 – 43,700,00	
Epicoprostanol	Pheromone	83	868 - 1,030,000	
17 alpha-Estradiol	Estrogen replacement	5	16 - 48	
17α-Ethynyl Estradiol	Widely prescribed estrogen	0	NA	
β-Stigmastanol	Plant steroid	83	3,400 - 1,330,000	
Stigmasterol	Plant steroid	76	455 – 56,500	
Testosterone	Steroid hormone	17	30 – 2,040	
PAHs, Semi-Volatile Organic Compounds				
Bis (2-ethylhexyl) phthalate	Plasticizer	84	657 – 310,000	
4-Chloroaniline	Aniline derivative	63	51 – 5,900	
Presenthene	Intermediate	77	45 – 12,000	
Pyrene	diate	72	44 – 14,000	

Next Steps

Assess availability of data

Characterize risk where data are sufficient

- Evaluate exposure and effects to human and ecological receptors
 - · 10 pollutants
 - · 135 pollutants
- Biosolids Core Risk Assessment Model

Rick Stevens

U.S. Environmental Protection Agency Office of Water Office of Science and Technology Health and Ecological Criteria Division Washington, D.C. 202-566-1135

Stevens.Rick@epa.gov

http://water.epa.gov/scitech/wastetech/biosolids/

Historical Overview of Round 1 Biosolids Land Application Regulations

Thomas J. Crawford Biosolids Barrister Emeritus Milwaukee, Wisconsin

> NBP Webcast October 31, 2012

Political Climate of Round 1

- No dog in that fight Congress imposed CWA mandates
 - · Reagan Revolution EPA budget cut 22%
 - New Federalism Devolution biosolids use and disposal stays local
 - Administrator Anne Gorsuch Superfund-gate, Rita Lavelle's perjury, contempt of Congress, Gorsuch "thrown-under-thebus"
- Just before publication EPA back-off a proposed 98% cap during OMB review (98% Cr = 840 mg/kg)
- Signed Nov. 25, 1992 George H. W. Bush lame duck administration
- Published Feb. 19, 1993 Bill Clinton (pro-environment)

Before Risk Assessment

- Milorganite® marketed as slow release N turf fertilizer since 1926
- Few state limits (Tobacco food crop)
- Fertilizer regulates only N-P-K label
- ▶ 1970s Food crop cadmium (Cd) uptake
- Maryland 1st environmental permit
 - 50 ppm Cd limit, Milorganite hit 120 ppm Cd
- Milwaukee adopts local Cd limit
 - Master Lock discharged 80% of Cd

Regulatory Paradigms

If not best available control technology, then what?

- Land application
 - "discharge" of pollutants, "recycle" nutrients or "disposal" of solid or hazardous waste?
 - 1988 Congress bans Deep Ocean disposal
 - Dumping till 1993
- Precautionary Principle
 - · No pollutant above soil background
- > Risk assessment Do no harm
 - Allow additional trace pollutants to soil without adverse effects

Domestic Sewage Exclusion

- ▶ Before Subpart B of Part 503 (2/19/1993)
 - 40 CFR Part 257 (1977). Cd, pathogen reduction and PCBs (soil incorporation if over 10 & less than 50)
- Solid waste means . . . sludge from a waste water treatment plant . . . except [bio-]solids . . . from point sources subject to [NPDES] permits 42 USC section 6903 (27)
- action forcing deadlines to promulgate risk based limits and practices, section 405 of CWA

Three branches of government + citizen groups, states & stakeholders

- Without land application standards that limit the concentration of pollutants in biosolids, Removal Credits could not be granted to industrial users
 - Natural Resources Defense Council (NRDC) v. EPA, 790 F.2d 289 (3rd Cir. 1986) (Reagan 1984 pretreatment rule invalid)
- ▶ 1987 Amendments to CWA
 - Congress briefly extended the mandate of the Court of Appeals until August 31, 1987 to promulgate biosolids standards

Another egregious failure of EPA to perform nondiscretionary duty

- "We leave for another day the puzzling question of how to compel a recalcitrant agency to perform a duty it has repeatedly by order to carry out, by Congress and the courts. Until that time, we wash our hands of the sludge problem."
 - Chicago Assn. of Commerce v. EPA, 873 F.2d 1025 (7th Cir. April 1989) (no removal credits until biosolids standards) (Cudahy, J.)
- Part 503 proposed Feb. 6, 1989
- ▶ Gather more data NSSS

Pretreatment Matures

Section 519 Report to Congress (1991)

- · Enhance pretreatment standards
- · Improve local limits and programs
- · Improve scientific basis of pretreatment limits
- Aggressive enforcement against NPDES permittees both SIUs and POTWs
- Phase 1 (1989) EPA enforces against 61 POTWs
- Phase 2 (1990) 69 more POTWs and 186 SIUs
- Initiative results in 670 penalty actions by EPA, states and POTWs (not including citizen suits)

Round1- Petitions for Review

- Leather Industries most requested removal credit from Part 424 BACT (3,000 mg/kg chromium)
- City of Pueblo, CO (selenium toddler access to highways)
- Mil. Metro (pellet bag sale is different use/low risk)
- AMSA (now NACWA) (Chicago dedicated farms not disposal)
- Three Molybdenum Petitioners settled after EPA reconsidered the Mo limits, 59 Fed. Reg. 9095 (Feb 25, 1904)
- Anti-biosolids Advocates did not challenge the Part 503 paradigm, nor intervene in the cases

D.C. Circuit

- Cases transferred and consolidated D.C. Cir. Appeal Court
- Wine glass of heat dried pellets
- Oral argument, Judge Wald ask EPA about the difference between studies of toxic Hex-Cr and nontoxic Trivalent chromium
- Congress ordered:
 - Numeric standards and management practices adequate to protect public health and the environment from any reasonably anticipated adverse effects of each pollutant
- Limits must have some relationship to risk
 - Based on evidence of risk, not merely a margin of safety

Summary of Argument

- Gross Application Scenario arbitrarily included all "sludge uses" to wit: heat dried bag sales to homeowners
- Statistically derived pollutant "caps" not based on concentrations which may adversely affect health or environment - not risk based according to law
- Limits not based on risk will mislead consumers on the degree of safety. False government compelled speech undercuts public acceptance
- Chicago's dedicated "beneficial" use sites wrongly misclassified as "disposal sites" - Stigma
- Relief requested remand on heat dried pellet use and invalid standards not based on risk assessment.

Failure to Explain Choices

- Agency must justify its failure to take account of circumstances that appear to warrant different treatment for different parties
- Either justify "one-size-fits-all" highly conservative assumptions on the rate and durance of biosolids use or provided more tailored caps that fit the data in the record on heat dried pellet use
 - 10 mt/ha x 100 years vs. 2.2 mt/ha x 20 yrs

Would States follow the Part 503 Risk Assessment?

- Upon remand, MMSD did not pursue new pollutant standards for pellets sold in bags to consumers based on actual application rates
 - Decade of State rule making proceedings
- ▶ Begin 48-state annual reporting
- Begin paying fees (often dry tons sold)
- How many 503 state issued permits?
 - One time state approval (NOI)
 - Full NPDES permitting

Duplicative State Rules - Some Frustration

- Limited State interest in delegation of Part 503 program
 - No \$\$ = no incentive to seek delegation
- State law variation expected
 - Florida Urban Turf Rule
- State regulation varies for Bags vs. Bulk use
- Florida rule variance
 - · Analytic results must be in-State certified lab
 - NELAP certification (National Environmental Laboratory Certification Program)

Chromium 1200 ppm or No Limit?

- States may regulate Cr
 - Ossification of science
 - State agency rule making burdens & procedures
- Non pica toddler soil consumption most sensitive pathway
- Plant uptake minor to irrelevant risk
- No evidence that caps would prevent "backsliding" of biosolids quality
- Law does not require pollutant elimination

Selenium – explain toddler risk on highways

- ▶ Pueblo I/I naturally high selenium
- Pathway 3 = HEI non-pica toddler daily consumption of biosolids/soil
- ▶ 100 mg/kg Se table 1 ceiling in biosolids
- ▶ 100 kg/hectare Se table 2 cumulative = toddler safe
- Pueblo's actual biosolids use = application to highway median strips with low potential for public contact or toddlers

99th percentile caps not based on riskrelated

- More restrictive caps are not lawful merely because more restrictive
- Little risk from land application biosolids
- Margin of safety is not a blanket one-way ratchet to tighten standards
 - "Statutes do more than point in a direction such as 'more safety.' They achieve a particular amount of that objective, at a particular costs in other interests. An agency cannot treat a statute as authorizing an indefinite march in a single direction." Judge Posner

Mo Revisited

- Molybdenosis eradicated
- 44 mg/kg rounded down to 40 mg/kg protects grazing ruminants the risk of molybdenum induced copper deficiency via forage grown on biosolids
 - George O'Connor, Robert Brobst, Rufus Chaney, Ron Kincaid, Lee McDowell, Gary Pierzynski, Alan Rubin and Gary Van Riper, A Modified Risk Assessment to Establish Molybdenum Standards for Land Application of Biosolids, J. of Environ. Qual. 30:1490-1507 (2001)

Pollutants eligible for Removal Credits

- Part 403, App G lists PCBs at 4.6 mg/kg
- App G = no adverse effect level based on most limiting of 14 pathways for 12 organic pollutants
- > 2.3 mg/kg is "corrected" PCB limit
 - Rufus Chaney, James Ryan & George O'Connor. Pathway Analysis of Terrestrial Risks in Land-Applied Biosolids Based on Field Measured Transfer Coefficients, Proceedings of the Conference on Management of Fate of Toxic Organics in Sludge Applied to Land. Tech. U of Denmark, Copenhagen (April 30 to May 2, 1997)

30 years later

- Few "corrections" to 1993 rule
- Pretreatment works
- Industrial discharges to POTWs down
- Residential trace organic chemicals (TOrCs)
- No harm from biosolids pollutants in soil managed pursuant to Part 503 paradigm
- Beneficial use widely accepted, except organic-foodcertification-discrimination of biosolids organic pedigree

Thank You!!

Tom Crawford

canoetommy@gmail.com

1539 North 50th Street Milwaukee, WI 53208-2210 mobile: 1-414-241-5350

- The term "biosolids" reflects the beneficial characteristics of residual solids generated from municipal wastewater treatment processes.
- ► The 40 CFR Part 503 rule also applies to <u>domestic</u> septage.

REGULATORY OVERVIEW

<u>Land Application</u> of biosolids includes a number of beneficial uses:

- 1. Agricultural land for food production
- 2. Agricultural land for production of feed and fiber crops
- 3. Pasture and rangeland
- 4. Non-agricultural land (e.g., forests)
- 5. Disturbed lands (e.g., highway embankments, mine reclamation, etc.)
- 5. Construction sites and gravel pits
- 7. Public contact sites (e.g., parks, cemeteries)
- 8. Home lawns and gardens

74

Management Practices

- Frozen or Snow Covered Ground
- Application of biosolids to flooded, frozen or snow covered land is <u>not</u> prohibited by the Part 503 rule
- Biosolids applied to such land must not enter surface waters or wetlands unless specifically authorized by a permit issued under Sections 402 or 404 of the CWA.

Management Practices

- Distance to Surface Waters
- Bulk biosolids may not be applied within ten meters (i.e., 33 feet) of any waters of the US unless specified by the permitting authority (i.e. revegetation of stream bank).

Management Practices

- Exceptional Quality or EQ Biosolids are <u>exempt</u> from 40 CFR Part 503 general requirements and management practices.
- To be EQ, biosolids must comply with:
- <u>Table 3</u> of Part 503 (Pollutant Concentrations)
- 2. Meet Class A Pathogen Reduction Control
- 3. Achieve VAR Using One of the <u>First 8</u>
 Options

REFERENCES

- McFarland, M. J. 2001. <u>Biosolids Engineering</u>. McGraw-Hill Book Company, Inc., New York, New York - ISBN 0-07-047178-9
- USEPA. 1994. A Plain English Guide to EPA Part 503 Biosolids Rule EPA-832-R-93-003. Office of Wastewater Management, Washington, DC
- USEPA. 1995a. Land Application of Sewage Sludge and Domestic Septage – Process Design Manual. EPA-625-R-95-001

10

