

Phosphorus Trends in New England Soils

Katie Campbell-Nelson

UMass Extension Vegetable Specialist kcampbel@umass.edu 413-545-1051

United States Department of Agriculture

Bruce Hoskins

Analytical Lab and Soil Testing Service

Dawn Pettinelli

UCONN UNIVERSITY OF CONNECTICUT Soil Nutrient Analysis Laboratory

Thank you!

Tracy Allen

UMassAmherst Soil & Plant Nutrient Testing Laboratory Joel Tilley

The University of Vermont

United States Department of Agriculture

of Modified Morgan samples by lab in 2015

P interpretations for Modified Morgan (mg/kg or ppm)

	Very Low	Low/ Below Optimum	Medium	Optimum	Above Optimum	Excessive
MA all crops	0-2	2-4		4-14	14-40	> 40
CT Agronomic Crops		0-6.5		9-10	10-17.5	> 17.5
VT all crops		0-1.9	2-3.9	4-7.9	8-39.9	>40
ME established lawn		0-1.75	1.75-3.5	3.5-5	>5	
ME potatoes		0-1.75	1.75-5	5-25	>25	
SARE 'Building Soils for Better Crops'	0-2	2-4		4-7	7-20	

United States Department of Agriculture

Number of Soil Samples by State in 2015

Number of Soil Samples by Crop ID in 2015

Extension

Nursery/Tree, Fruit, Vegitable, and Agronomic Crop Types

United States Department of

Agriculture

Thank you! Ben Warner Postdoc Researcher, UMass Geosciences

Median P ppm

UMass Extension

United States Department of Agriculture

SCIENCES

% of samples in 3 P levels

Modified Morgan extracted P ppm in relation to pH

United States Department of Agriculture

Summary / Questions

- Gardeners have 'above Optimum' P and are the largest potential audience for education, but we don't know how much acreage they represent.
- Agronomic crops make up the largest acreage, but why are the P levels lower than other crops?
- Vegetable and Organic crops have higher P; why?
- What does the soil test P level have to do with environmental risk?

United States Department of Agriculture