PFAS in Biosolids

A Southern Arizona Case Study

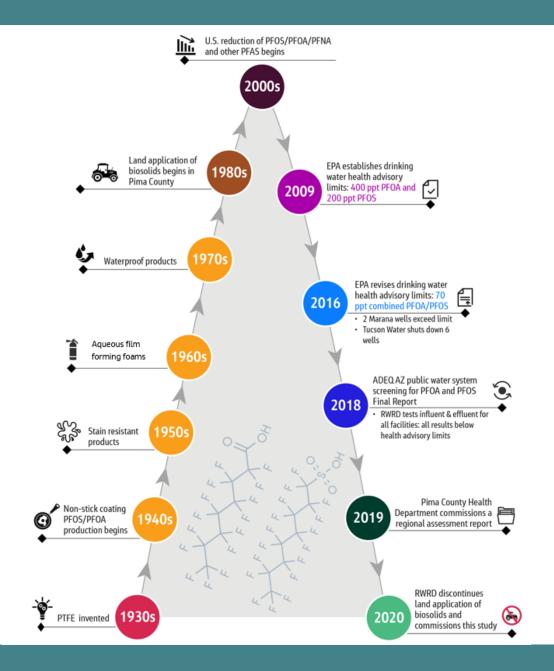
Ian Pepper, University of Arizona Jeff Prevatt, Pima County Wastewater Reclamation

PERFLUORINATED COMPOUNDS (PFCs)

- Fully fluorinated long chain organic compounds
- Family of anthropogenic chemicals used for decades to make products resistant to heat, oil stains, grease and water
- Perfluoroctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) most prevalent PFCs in the U.S.
- Regarded by EPA as an "emerging contaminant"

Characteristics of PFOS and PFOA

- Persistent in the environment, resistant to most microbial degradation processes
- Found in soil, sediments, and water
- Soluble and can migrate through soils
- All people in the U.S. thought to have PFCs in their blood
- Can stay within human body for many years

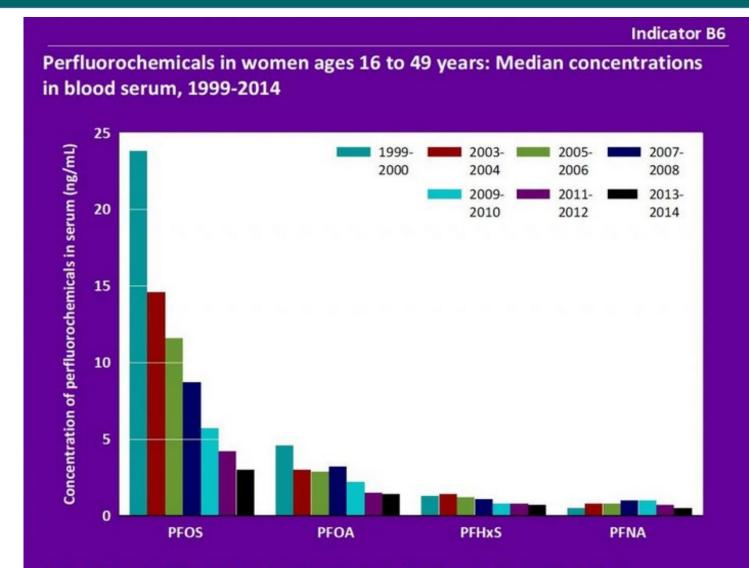

Household Exposure to PFCs

- Textiles
- Carpets
- Cleaning agents
- Leather

- Baking and sandwich papers
- Ski waxes
- Gloves
- Household dust

PFOS voluntarily phased out of production in the U.S. between 2000 and 2002

PFOA phased out by 8 major companies in the U.S. in 2006


PFAS Timeline

- >70 years of peak production prior to voluntary phase out & first HAL
- Lack of routine monitoring prior to 2016 HAL revision
- Ina Road WPCF begins operation 1977
- Land application of biosolids begins 1984

Blood Serum Levels, 1999 - 2016

Data Source: Centers for Disease Control and Prevention. Fourth Report on Human Exposure to Environmental Chemicals, Updated Tables, January 2019.

Data: Centers for Disease Control and Prevention, National Center for Health Statistics and National Center for Environmental Health, National Health and Nutrition Examination Survey

Note: To reflect exposures to women who are pregnant or may become pregnant, the estimates are adjusted for the probability (by age and race/ethnicity) that a woman gives birth.

America's Children and the Environment, Third Edition, Updated August 2017

CASE STUDY

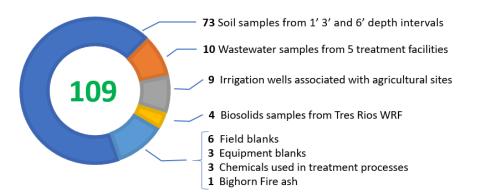
Timeline:

March – October 2020

Collaboration:

RATIONALE FOR STUDY

- In Pima County, 100% of locally produced Class B biosolids land applied 1984 – 2020
- Class B biosolids contain trace amounts of PFAS
- Recent increased national concern over possible contamination of potable groundwater
- January 1, 2020, Pima County Board of Supervisors took conservative approach of enacting a temporary moratorium on land application of biosolids

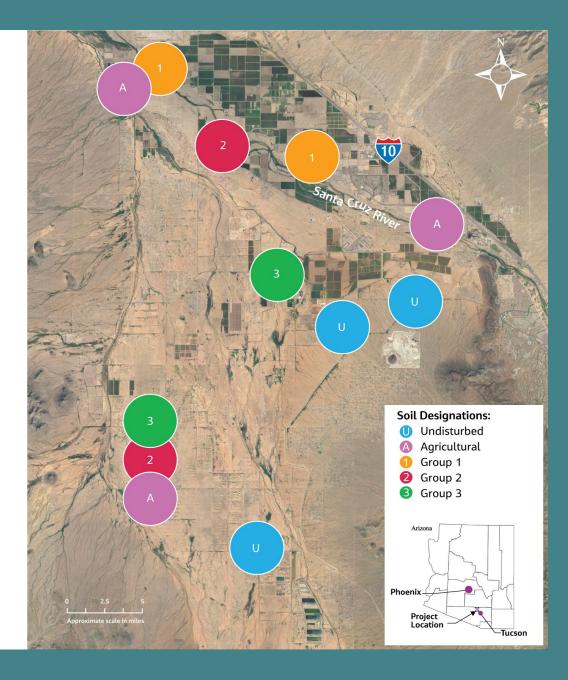

IMPACT OF MORATORIUM

- All biosolids in Pima County now being landfilled
- Doubled disposal costs for biosolids
- Removed availability of beneficial organic fertilizer to local farmers for agricultural production
- Provided impetus for this current study:
 GOAL: Fully evaluate the potential impact of land application on groundwater contamination by PFAS

APPROACH

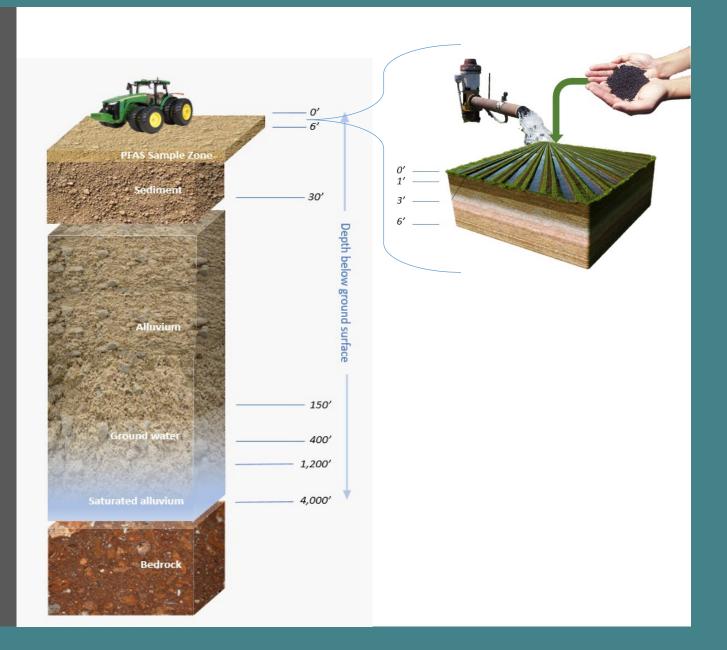
- Largest study on PFAS ever conducted
- Collaboration between Pima County Wastewater, University of Arizona and local farmers
- Agricultural sites identified where Class B biosolids land applied since 1984
- Known recorded land application rates
- Samples of soil, well water and biosolids collected and analyzed for a suite of PFAS compounds

Sample Locations



Designation	Agricultural	Irrigated	Biosolids Applied	Application Years
Undisturbed	-	-	-	-
Agricultural	\checkmark	\checkmark	-	-
Group 1	\checkmark	\checkmark	≤ 20 tons/acre	4 - 9
Group 2	\checkmark	\checkmark	21-30 tons/acre	12 – 20
Group 3	\checkmark	\checkmark	> 30 tons/acre	6 - 9

. . .


....

Soil

Soil Sampling

- Soil sampling utilized a hand augers
- Sample depths of 1', 3', and 6' below the surface
- Strict protocol followed to prevent PFAS contamination

PFAS in Biosolids: A Southern Arizona Case Study

PFAS IN BIOSOLIDS									
Location		TRES RI	OS WRF						
Sample Date	7/16/2020	7/16/2020	7/27/2020	7/27/2020					
Units									
PFAS Contaminant		μg/kg	(ppb)						
DONA F-53B (Major) F-53B (Minor) GenX NEtFOSAA NMeFOSAA PFBS PFDA PFDA PFDA PFDA PFHpA PFHxS PFHxA PFNA PFNA PFNA PFOS PFOA PFTeA PFTriA	ND ND ND ND 21 1.9 12 8 ND 3.7 4.2 ND 34.0 ND 3.2 ND	ND ND ND ND 22 1.4 13 7.3 ND 3.5 4.0 2.0 36 ND 3.3 ND	ND ND ND 23 6.5 12 7.4 ND 15 4.1 2.0 27 ND ND ND	ND ND ND 11 18 ND 12 6.5 0.15 ND 2.0 1.1 14 1.2 ND ND					
PFUnA Moisture	2.3 81.7%	2.1 82.0%	2.4 81.0%	1.8 80.7%					

Notes:

 μ g/kg dry = micrograms of contaminant per kilogram of dry biosolids also equivalent to parts per billion (ppb). Black indicates values above the method reporting limit (MRL).

	AGRICULTURAL SITES		GRO	GROUP 1 GR		JP2	GROUP 3		
	ng/L		ng	ng/L		/L	ng/L		
Contaminant		(ppt)		(pi	ot)	(pr	ot)	(ppt)	
DONA	ND	ND	ND	ND	ND	ND	ND	ND	ND
F-53B (Major)	ND	ND	ND	ND	ND	ND	ND	ND	ND
F-53B (Minor)	ND	ND	ND	ND	ND	ND	ND	ND	ND
GenX	ND	ND	ND	ND	ND	ND	ND	ND	ND
NEtFOSAA	ND	ND	ND	ND	ND	ND	ND	ND	ND
NMeFOSAA	ND	ND	ND	ND	ND	ND	ND	ND	ND
PFBS	10	ND	3.8	ND	1.4	ND	0.68	0.68	3.6
PFDA	1.9	ND	ND	ND	ND	ND	ND	ND	0.57
PFDoA	ND	ND	ND	ND	ND	ND	ND	ND	ND
PFHpA	5.3	ND	3.2	0.28	0.98	ND	0.26	ND	1.9
PFHxS	34	0.30	20	0.24	7.7	0.3	0.76	0.52	7.0
PFHxA	14	ND	8.6	ND	1.9	ND	ND	2.2	6.9
PFNA	3.4	ND	0.57	ND	0.28	ND	ND	ND	0.63
PFOS	80	ND	26	ND	11	0.53	ND	ND	15
PFOA	20	ND	9.1	ND	3.1	ND	0.81	ND	5.0
PFTeA	ND	ND	ND	ND	ND	ND	ND	ND	ND
PFTriA	ND	ND	ND	ND	ND	ND	ND	ND	ND
PFUnA	ND	ND	ND	ND	ND	ND	ND	ND	ND

Notes: ND indicates not-detected. ng/L = ppt

Black indicates values above the method detection limit (MDL)

Blue values indicate values above the method reporting limit (MRL)

Groundwater Results

- PFAS detected in nearly all irrigation sources
- PFAS concentrations higher in irrigation sources never receiving biosolids
- Highest PFAS concentration in irrigation source farthest removed from the Santa Cruz River

Characteristics

- No agriculture
- No irrigation
- No biosolids
- No PFAS contamination
- Influenced by wind and rain only

Undisturbed Soil Results

Depth	Surface	1′	3'	6'
Contaminant		µg/k	g (ppb)	
DONA	ND	ND	ND	ND
F-53B (Major)	ND	ND	ND	ND
F-53B (Minor)	ND	ND	ND	ND
GenX	ND	ND	ND	ND
NEtFOSAA	ND	ND	ND	ND
NMeFOSAA	ND	ND	ND	ND
PFBS	ND	ND	ND	ND
PFDA	ND	ND	ND	ND
PFDoA	ND	ND	ND	ND
PFHpA	ND	ND	ND	ND
PFHxS	ND	ND	ND	ND
PFHxA	ND	ND	ND	ND
PFNA	ND	ND	ND	ND
PFOS	ND	ND	ND	ND
PFOA	ND	ND	ND	ND
PFTeA	ND	ND	ND	ND
PFTriA	ND	ND	ND	ND
PFUnA	ND	ND	ND	ND
Moisture		5.1%	5.8%	5.5%

Notes:

ND indicates not-detected at the MDL

No Biosolids

Depth	1'	3'	6'	PFAS
				present in Irrigation
Contaminant			Wells	
DONA	ND	ND	ND	
F-53B (Major)	ND	ND	ND	
F-53B (Minor)	ND	ND	ND	
GenX	ND	ND	ND	
NEtFOSAA	ND	ND	ND	
NMeFOSAA	ND	ND	ND	
PFBS	0.03	ND	ND	\checkmark
PFDA	0.05	ND	ND	\checkmark
PFDoA	ND	ND	ND	
PFHpA	0.05	0.03	0.04	\checkmark
PFHxS	0.07	0.06	0.09	\checkmark
PFHxA	0.09	0.06	0.05	\checkmark
PFNA	0.08	ND	ND	\checkmark
PFOS	1.85 ± 1.2	0.59 ± 0.37	0.25 ± 0.17	\checkmark
PFOA	0.26 ± 0.14	0.18 ± 0.12	0.22 ± 0.09	\checkmark
PFTeA	ND	ND	ND	
PFTriA	ND	ND	ND	
PFUnA	ND	ND	ND	
Moisture	10.9%	12.1%	12.3%	
PFOS				
Attenuation	N/A	63%	84%	

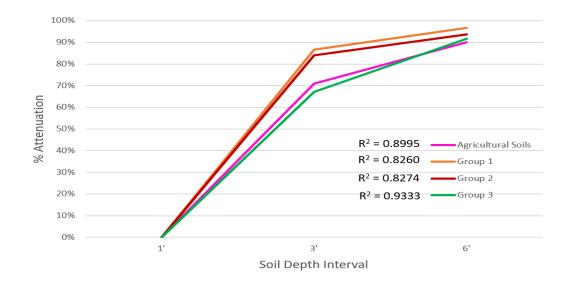
≤20 Tons of Biosolids

4-9 year application

Depth	1′	3'	6'	PFAS present in			
Contaminant		µg/kg (ppb)	Biosolids	Irrigation Wells			
DONA	ND	ND	ND				
F-53B (Major)	ND	ND	ND				
F-53B (Minor)	ND	ND	ND				
GenX	ND	ND	ND				
NEtFOSAA	ND	ND	ND				
NMeFOSAA	ND	ND	ND				
PFBS	ND	0.08	0.04	\checkmark	\checkmark		
PFDA	0.10	ND	ND	\checkmark			
PFDoA	ND	ND	ND	\checkmark			
PFHpA	0.08	0.06	ND	\checkmark	\checkmark		
PFHxS	0.10	0.17	0.04	\checkmark	\checkmark		
PFHxA	0.14	0.11	ND	\checkmark	\checkmark		
PFNA	0.06	ND	ND	\checkmark	\checkmark		
PFOS	1.58 ± 1.76	0.29 ± 0.20	ND	\checkmark	\checkmark		
PFOA	0.32 ± 0.33	0.26 ± 0.26	ND	\checkmark	\checkmark		
PFTeA	ND	ND	ND	\checkmark			
PFTriA	ND	ND	ND				
PFUnA	ND	ND	ND	\checkmark			
Moisture	7.8%	9.5%	9.9%				
PFOS							
Attenuation	N/A	82%	100%				

21-30 Tons of Biosolids

12-20 year application


Depth	1′	3'	6'	PFAS p	present in
Contaminant		µg/kg (ppb)		Biosolids	Irrigation Wells
DONA	ND	ND	ND		
F-53B (Major)	ND	ND	ND		
F-53B (Minor)	ND	ND	ND		
GenX	ND	ND	ND		
NEtFOSAA	ND	ND	ND		
NMeFOSAA	ND	ND	ND		
PFBS	0.17	0.10	0.12	\checkmark	\checkmark
PFDA	0.56	0.06	0.05	\checkmark	
PFDoA	0.04	ND	ND	\checkmark	
PFHpA	0.09	0.09	0.06	\checkmark	\checkmark
PFHxS	0.03	0.04	0.05	\checkmark	\checkmark
PFHxA	0.13	0.09	0.09	\checkmark	
PFNA	0.43	0.12	ND	\checkmark	
PFOS	3.11 ± 2.06	0.64 ± 0.31	0.22 ± 0.09	\checkmark	\checkmark
PFOA	0.47 ± 0.29	0.49 ± 0.18	1.65 ± 2.38	\checkmark	\checkmark
PFTeA	ND	ND	ND	\checkmark	
PFTriA	ND	ND	ND		
PFUnA	ND	ND	ND	\checkmark	
Moisture	5.3%	10.5%	10.2 %		
PFOS					
Attenuation	N/A	79%	93%		

>30 Tons of Biosolids

6-9 year application

Depth	1'	3′	6'	PFAS p	resent in
Contaminant		µg/kg (ppb)	1	Biosolids	Irrigation Wells
DONA	ND	ND	ND		
F-53B (Major)	ND	ND	ND		
F-53B (Minor)	ND	ND	ND		
GenX	ND	ND	ND		
NEtFOSAA	ND	ND	ND		
NMeFOSAA	ND	ND	ND		
PFBS	0.37	0.20	0.14	\checkmark	\checkmark
PFDA	0.98	0.11	0.15	\checkmark	\checkmark
PFDoA	0.24	ND	0.08	\checkmark	
PFHpA	0.19	0.16	0.24	\checkmark	\checkmark
PFHxS	0.12	0.15	0.16	\checkmark	\checkmark
PFHxA	0.51	0.22	0.13	\checkmark	\checkmark
PFNA	0.43	0.15	0.05	\checkmark	\checkmark
PFOS	4.13 ± 1.86	1.22 ± 1.36	0.46 ± 0.46	\checkmark	\checkmark
PFOA	0.84 ± 0.48	1.32 ± 1.43	0.51 ± 0.61	\checkmark	\checkmark
PFTeA	0.09	ND	ND	\checkmark	
PFTriA	ND	ND	ND		
PFUnA	0.10	ND	ND	\checkmark	
Moisture	9.5%	8.9%	10%		
PFOS					
Attenuation	N/A	84%	90%		

tion) Bioso culture	lids 9 Only			ns/aci 1 Soil			0 tons oup 2 S				tons/ oup 3 S		
Attenuation	nua		3 locations			4 locations			3 locations			5 locations				
Atte	3′	67%	85%	75%	89%	84%	93%	91%	60%	81%	92%	55%	67%	84%	87%	93%
%	6'	85%	-	95%	95%	97%	-	-	85%	93%	-	86%	94%	92%	-	97%

PFAS Attenuation

- Strong correlation for adsorption of PFAS
- Retained in the first few feet
- Minimal migration below 6' depth
- 90% 97% attenuation for all soil groups

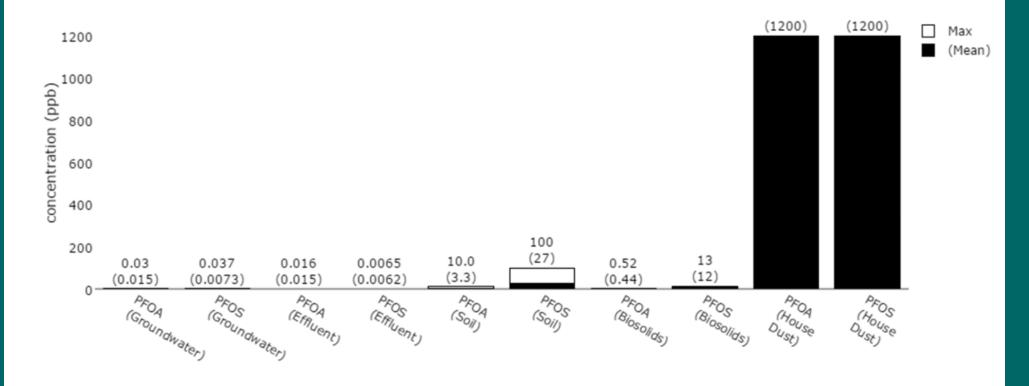
- mg/L = ppm (parts per million) 1 ppm is the equivalent of one second every 11.6 days
- $\mu g/kg = ppb (parts per billion)$ ng/g = ppb (parts per billion) 1 ppb is the equivalent of one second in 32 years
- ng/L = ppt (parts per trillion) 1 ppt is the equivalent of one second in 32,000 years

1 part per trillion (ppt) IS EQUIVALENT TO A SINGLE DROP OF WATER IN 20 Olympic-sized **Swimming Pools**

PFAS Concentrations

 \bullet

•


•

•

Wastewater effluent 8 - 40 ppt DW health advisory limit 70 ppt Olive oil 1,800 ppt Landfill leachate 2,200 ppt Biosolids 28,000 ppt Food packaging 54,000 ppt Dust in day care centers 201,000 ppt Sunscreen 6,500,000 ppt 10,000,000,000 ppt • AFFF

KERN COUNTY CASE

PFOA and PFOS in effluent, soil, and biosolids measured at Green Acres Farm, 2015, compared with PFOA and PFOS concentrations in household dust*

*Household dust measurements from Trudel et al. Risk Analysis, Vol. 28, No. 2, 2008

CONCLUSIONS

- Input of PFAS from long-term land application of biosolids minimal
- PFAS presence in irrigation sources likely contributes to detection in soils
- PFAS on soils with biosolids slightly higher than agricultural soils without biosolids
- PFAS concentrations rapidly decrease with depth
- 90% 97% attenuation below 6'
- Minimal migration below 6'
- Potential for groundwater contamination is minimal