

NEWEA 2013 -Combined Heat & Power Lewiston, ME

Dan Kelley-Vice President & Service Line Leader Portland, ME

CHP Executive Summary

- Combined Heat and Power (CHP) solutions represent a proven and effective near-term energy option to help the United States enhance energy efficiency, allow energy independence, ensure environmental quality, promote economic growth, and foster a robust energy infrastructure.
- It is not a single technology but a group of technologies that can use a variety of fuels to provide reliable electricity, mechanical power, or thermal energy at a factory, university campus, hospital, or commercial building—wherever the power is needed.
- CHP's efficiency comes from recovering the heat that would normally be wasted while generating power to supply the heating or cooling needs of the user.

Proven Technology & Results

- CHP has been around in one form or another for more than 100 years; it is proven, not speculative.
- Despite this proven track record, CHP remains underutilized
- Current market conditions, lack of understanding, and technical barriers continue to impede full realization of CHP's potential.

Benefits of CHP Applications

- CHP positively impacts the health of local economies and supports national policy goals in a number of ways.
 Specifically, CHP can:
 - Enhance our energy security by reducing our national energy requirements and help businesses weather energy price volatility and supply disruptions
 - Advance our climate change and environmental goals by reducing emissions of CO2 and other pollutants
 - Improve business competitiveness by increasing energy efficiency and managing costs
 - Increase resiliency of our energy infrastructure by limiting congestion, load reduction, offsetting transmission losses, and disaster recovery
 - Improve energy efficiency by capturing heat that is normally wasted

Traditional System Losses

CHP Is Gaining Popularity & Growing

Worldwide Comparison

What is Combined Heat & Power (CHP)

- Also known as Cogeneration:
 - Concurrent production of electrical & thermal (heating / cooling) energy from a single fuel source.
 - Two (or more) outputs for a single input

Technology

- Prime Mover (Mechanical) burning fuel source coupled to an electric generator (Electric) and heat recovery unit (Thermal)
- Sized to meet users thermal base load

Distributed Generation

- Located at or near the point of consumption
- Avoids electrical transmission losses

CHP Process Flow Diagram

CHP Flow Diagram – Recip Engine

CHP Flow Diagram – Combined Cycle

CHP Technologies

Combustion Turbine

- 500kW to 250 MW
- 75+% Overall Efficiency
- High Pressure Steam
- Noise & HP Gas Supply
- Micro-Turbine
 - 30 kW to 250 kW
 - 75+% Overall Efficiency
 - Hot Water or LP Steam

Reciprocating Engine

- Up to 5 MW
- 80+% Overall Efficiency
- Hot Water, LP & HP Steam
- Noise & Maintenance

Biomass Boiler / Backpressure Steam Turbine

- 30 kW to 500 MW
- 80% Overall Efficiency
- LP or HP Steam
- Long startup

Fuel Cell

- 5 kW to 2 MW
- 85% Overall Efficiency
- Hot water, LP & HP Steam
- High capital cost

CHP Technology Comparison

	Available	Power	Overall	Part	Est. Installed	Est. O&M		Hours to	Startup	Fuel	Fuel	Noise	Thermal		
Technology	Sizes	Efficiency	Efficiency	Load	Cost (\$/Kwe)	Costs (\$/Kwe)	Availability	Overhaul	Time	Press (psig)	Types	Level	Output	Advantages	Disadvantages
Steam Turbine	50kW to 250	15-38%	80%	Fair	430-1,100	< 0.005	Near 100%	> 50,000	Long &	N/A	N/A	High	LP - HP Steam	Hi overall eff., wide	Slow Startup, Low
	MW								depends on					range of heat output,	power to heat ratio
									size					long working life, hi	
														reliability	
Recip Engine	<u><</u> 5MW	22-40%	70-80%	Good	1,100-2,200	0.009-0.022	92-97%	25,000-50,000	< 1 minute	1.0 - 45	Natural gas, biogas,	High	hot water & LP	Hi power eff thru	Hi maintenance costs,
											propane, landfill gas,		steam	range of output,	lower heat output &
											diesel fuel			flexibility, low cost,	limited applications,
														island mode	relatively hi
														operation, ease of	emmissions, cooling
														maintenance, low	requirements, noise
														press gas	
Gas Turbine	500 kW to	22-36	70-75%	Poor	970-1,300	0.004-0.011	90-98%	25,000-50,000	10 min to 1 h	100-500	Natural gas, biogas,	Moderate	heat, hot water, LP	Hi overall eff., Low	Require hi press gas,
	250 MW										propane, fuel oils		& HP steam	emmissions, High	Poor eff at low loads,
														grade heat output, no	output falls as ambient
														cooling required	temp rises
MicroTurbine	30 kW to 250	18-27%	65-75%	Fair	2,400-3,000	0.012-0.25	90-98%	20,000-40,000	1-5 minutes	50-80	Natural gas, biogas,	Moderate	heat, hot water, LP	Fewer moving parts,	Hi costs, low
	kW										propane, fuel oils		steam	compact size & lite	mechanical eff.,
														weight, low	limitted or lower temp.
														emissions, No cooling	output & applications
														required	
Fuel Cell	5 kW to 2	30-63%	55-80%	Good	5,000-6,500	0.032-0.038	> 95%	32,000-64,000	Long - 3 hrs to	0.05 - 45	hydrogen, natural	Low	hot water, LP & HP	Low emmissions, low	Hi costs, low durability,
	MW								3 days		gas, propane,		steam	noise, hi eff over load	fuels require
											methanol			range, modular	processing unless pure
															hydrogen is used

CHP – Fuel Types & Markets

- Fuel Types:
 - Natural Gas supplied from Utility, CNG, or LNG
 - Propane
 - Fuel Oil Low Sulfur Diesel
 - Landfill Gas requires scrubbing or cleaning of the gas
 - Biogas Anaerobic Digesters (Municipal, Agricultural, Food Waste) and Wood Gasification
 - Hydrogen Fuel Cell
 - Biomass Wood, wood waste, Crop residue, MSW, Food waste
- Markets
 - Education Colleges, Universities, and Schools
 - Hospitals & Nursing Homes
 - Real Estate Apartment buildings, office complexes, neighborhoods
 - Hotels & Conference Centers, Spas, Ski Resorts
 - Food Services Refrigerated storage, Food waste
 - Industrial / Process
 - Municipal Public buildings, Water & Wastewater, Correctional Facilities
 - Misc. Museums

Existing CHP Capacity

CHP Capacity by Market Type

Installed CHP by State

CHP Target Applications

- Relatively high electric and thermal loads
- Thermal energy loads hot water, steam, or chilled water
- High operating hours or consistent load of greater than 4,000 hours per year
- Consistent load is beneficial

Identifying CHP Applications

- Energy Consumption & Map (Peak, Min, Average)
 - Identify your Electrical load (hourly data)
 - Identify your Thermal Load (hourly data)
 - Heating & Cooling
 - Process or other uses
 - Current Fuel sources, annual costs, and alternatives
- Sizing Dependent on Loads
 - Most applications Electrical > Thermal
 - Size the system for Nominal Thermal load Ensures 100% of Electrical output is used
 - Other Factors Carbon Footprint, Energy Independence, or aging infra-structure
 - Develop a Financial Model with payback and incentives
 - Get your Financial group involved Tax Benefits

Example Financial Model

NUMBER Installer Control Report Control				No State 1-was input- (-state)					transfer.			Traper .					
interplay had in the factor of the	276.40		Frank Transformer Frankrike Frankrike Frankrike Frankrike Frankrike 1977 Santra Frankrike 1977 Santra Frankrike		63,05	19,09		infen			line -		14				
Adding Trad Tradewilling	84546				8.0.70 18			100 84	an Min		Sep frank	1.0	1				
a l'anna this i se	100.00				10.00 10.00		Techar Hart has										
(Hiterarlang freets	14,45	1000															
OF he lengths	if and	(Parts)			alia -	18,462	-		Terra bet	***	a franci						
Annual Television	Ala. of			Property Transport Carl Transmit Transport Carl		Elson.											
input function	44.14																
040104	8-14			territor.		0.47	14										
KHO Telev	ELM.			with they		5444											
Ind Property State Inter	perior		100	Tellowith	÷.	66.77								1.	1	12	2
rest far Frynd	Top loger	184	-	10.00	(ring)	10.00	44.00	10.0	1000	and and		10.04	10.07	44.44	10.00	Alex Text	10.7
that said	10.000	them.	00.05	00,01	68,510	isfyle:	10.00	671.00	00,000	81.01	milant	And inter-	And and	\$7.01	within	10.00	\$0.07
NO:			-88-	110	-112	112	123	-10	104	110	-110	- 65	100	- 205	10	110	-84
int.	Teller .		1.22					1.10		1000	10.25	14720	1993		10.10		313
new .	2.44	1000	200	10.000	10.04	54754	100	10.44	0.544	10.00	81,00	100	100	and a second	P124	11.44	220
in the			-107	204	104	True .	10.00	10.0	- 4041	904	112	NE	RGE .	2.0	904	85/4	- 401
										Contract of the	1000	Contraction of the	1000				1.

CHP Thermal Applications

- Depends on the Process Identify where and how
- Hot Water or Low Pressure Steam
 - Domestic Hot Water Supply
 - Building or District Heating & Cooling
 - Process / Manufacturing / Drying
 - Anaerobic Digesters
 - Pre-heating water
- High Pressure Steam
 - Additional Electric Generation or District Heating
 - Process / Manufacturing / Production
 - Pulp & Paper
 - Food Processing / Preparation
 - Laundry

AD / CHP Process Flow Diagram

Waste Water Applications

- CHP Fuel Biogas or Sludge Incineration
- Electrical Offset or Independence
- Waste Water Thermal Applications:
 - Anaerobic Digester Temperature Control and Biogas production
 - Fats, Oil, and Greases (FOG) Heating
 - Sludge Heating / Drying
 - Building Heat / Cooling
 - Domestic Hot Water

Alternatives for Biogas

- Combustion processes like CHP
- Compressed Natural Gas
 - Requires Scrubbing & Cleaning
 - Transportation / Vehicles
 - Natural Gas supplement Supply & Onsite
 - Co-fire or used to fire existing boilers
 - Cooking / Kitchen use
 - Process firing co-firing in duct burners or duct heaters

Generator Cooling Pier	Exhaust Outlet	
	Secondaria Secondaria	
Arr Irdahe	1	tter RT
1	1 0	
Loueston .	- A	
9	The second	
Composition		/
	heire	

WWTP Energy Neutrality – Reduce your Dependency!

- Purchased Energy Costs will continue to increase with demand (Even Natural Gas)
 - Offset with Biogas or Biomass CHP
- Largest Single Energy Cost is Electricity
 - CHP provides electrical offset savings
- Traditional Systems are less efficient
 - CHP provides 2 outputs with one fuel input
- Take advantage of Rebates & Incentives (\$\$)
- 50% Less emissions and GHG
- Natural disaster or Utility disruption Microgrid
- Mix in Energy Conservation Lighting, Insulation, Etc.
- Solar PV Electric Generation is viable in Maine

