

WELCOME.

NEDR # 10 is SPONSORED BY:

Triton ORotamix

Northeast Digestion Roundtable 2018

Quarterly webinars to share technical operations experiences & advance best practices regarding anaerobic digestion in this region.

INSTRUCTIONS

Hydraulic mixing system using fixed nozzles and an external Vaughan Chopper Pump

DUAL-ZONE MIXING

- Zone 1: Vortical flow pattern, and reduces settling in center of tank
- Zone 2: Uniform flow pattern, driving the tank contents.

DESIGN FLEXIBILITY

- Ability to mix multiple tanks with one pump.
- The Vaughan Chopper Pump provides all motive force for distribution of flow while also continuously breaking down solids.

- Low cost, effective means of mixing
- Easily maintained
- No moving parts in the tank
- Reliable operation using the Vaughan Chopper
 Pump
- Designs for all geometries
- Guaranteed mixing
- Computerized flow models optimize mixing

Applications

Lime Stabilization

Anoxic Zone Mixing

■ FOG and High Strength (Food) Wastes

Septage Receiving

Skimmings Systems

Influent Channels

CSO Basins

FOG
(Fats, Oils and
Greases)
&
High Strength
Wastes (HSW)

rotamix.com

Other Mixing Assembies

Externally Mounted Assemblies, available in several configurations with various features to suit the application .

Foambuster with

• 1" thick glass lined nozzle with 74C Rockwell Hard

■ 3MTM ScotchkoteTM 134 Fusion Bonded Epoxy Exterior Coating

• 10 year full warranty includes wear

Vaughan Chopper Pumps

- Mixing flows to 13000 GPM
- Ability to physically break down solids increases VSR
- Multiple Seal Options
- Self Primer, Vertical Wet Well and submersible pumps offer design flexibility
- Chopping action enhances Volatile Solids Reduction

OPERATIONAL ADVANTAGES

- ✓ Flexibility if feedstocks change.
- ✓ Chopper Pump conditions sludge
- ✓ Reduced Energy Option Savings
- ✓ Dual function-mix or load out
- ✓ Not liquid level dependent
- ✓ Optional Foam Suppression

ORotamix

Northeast Digestion Roundtable 2018

Quarterly webinars to share technical operations experiences & advance best practices regarding anaerobic digestion in this region.

INSTRUCTIONS

WERF ENER12R13:

Understanding Impacts of Co-Digestion:
Digester Chemistry, Gas Production, Dewaterability, Solids Production, Cake Quality, and
Economics

PIs

Matthew Higgins, Bucknell University Ganesh Rajagopalan, Kennedy/Jenks

Technical Advisory Committee

Sudhir Murthy, DC Water
Charles Bott, HRSD
Krishna Pagilla, University of Nevada, Reno
Chris Wilson, HRSD

What Happens When We Add Co-Wastes?

Possible Impacts:

- 1. Changes in Digester Chemistry
 - a. Alkalinity, pH, N, P, VFAs, COD (digester stability and sidestream impacts)
 - b. Gas Composition (CH₄, CO₂ ratios)
 - c. Gas Production (gas holdup and rapid rise)
 - d. Cations: Na, K, Ca, Mg, NH₄⁺ (dewatering impacts)
 - e. C/N Ratios of solids (cake quality)
- 2. Changes in Viscosity and Surface Tension
 - a. Mixing, gas holdup, rapid rise and foaming, dewatering

Causal Loop Diagram of Effects

Goals of WE&RF Project

Central Goal: Develop Tools to Understand Impacts

- 1. Develop stoichiometric model
 - a. central to predicting digester stability, gas production, chemistry, and side-streams...
- 2. Understand relationships between
 - a. rheology and volume expansion/foaming
 - b. cations, anions and dewaterability
 - c. CHNO and cake quality (odors)

Phase I Approach: Field Studies

1. Evaluate Full Scale Sites

- side-by-side control and co-digestion
- baseline testing followed by co-digestion

2. Characterize

- 1. feed in terms of elemental analysis
- 2. digester chemistry (pH, Alkalinity, NH₄, etc)
- 3. gas composition and production
- 4. digester rheology, rapid rise potential
- 5. dewaterability and return liquor characteristics
- 6. cake quality

Phase II Approach: Lab Studies

Fill in our knowledge gaps with controlled laboratory digestion studies.

- 10 L active volume
- T = 37 °C
- High Torque, 100 rpm Motor
- · Gas Volume and Rate by Respirometer

Stoichiometry of Anaerobic Digestion

Theoretical General Equation (Buswell, 1952)

x, y and z are a function of n, a, b, and c

Stoichiometry of Anaerobic Digestion

Parameters we can predict	Importance	Ranges
Digester pH	Master variable for digester operation	6.7-7.8
Alkalinity	Helps maintain pH due to high loading	>1000
NH ₄ ⁺	Can lead to inhibition at high concentrations, dewaterability effects, side-stream composition	<2800
CH ₄ Production	Gas/Energy Production	
Biogas Composition (CH ₄ /CO ₂ Ratio)	Biogas Production and quality	

Stoichiometry of Anaerobic Digestion

Туре	Formula	Source
Primary Sludges	C ₁₇ H ₃₁ O _{7.2} N	Bucknell Data (average of 5 plants)
Waste Activated	$C_{6.6}H_{12}O_{2.4}N$	Bucknell Data (average of 8 plants)
Food Waste	$C_{17}H_{30}O_6N$	Bucknell Data (average of 3 different FWs)
Fats	C ₁₆ H ₃₂ O ₂	Rittman and McCarty
Carbohydrate	$C_6H_{10}O_5$	Rittman and McCarty
Protein	$C_{16}H_{24}O_5N_4$	Rittman and McCarty

Applications of Stoichiometry

- 1. Evaluate effects of different feed stocks on digester chemistry
 - pH
 - alkalinity
 - ammonia
 - gas production
- 2. Solve digester chemistry issues:
 - pH (too low or too high)
 - alkalinity (too low)
 - ammonia inhibition (too high)

Scenario 1: Low Loaded Digester

Scenario 1 Inputs:

<u>Sludges</u>

- 3% TS Inflow, 50/50 Mix of Primary and Secondary
- 20 d SRT
- VSR = 55%

Co-Digestion Feedstocks:

- Fats, Protein or Carbs
- 15% TS, VS/TS = 0.9 80% VSR

Scenario 1: Effect on Methane Production

Scenario 1: Effect of Co-Waste Addition on Digester pH

Scenario 1: Effect on Digester Bicarbonate Alkalinity

26

Scenario 1: Effect of Co-Waste Addition on Digester NH₄⁺

Scenario 1: Effect of Co-Waste Addition on Digester NH₄⁺

We can use co-digestion to solve digester issues

Issues with highly loaded digesters such as thermal hydrolysis:

- a. high ammonia concentrations > 3000 mg/L
- b. high pH and alkalinity
- c. inhibition of methanogens and possibly hydrolysis

Adding <u>low N co-wastes</u> can reduce inhibition by reducing pH and ammonia concentrations while also increasing gas production:

FOG: $C_{16}H_{32}O_2$

Carbs: C₆H₁₀O₅

Understanding Impacts

- 1. Rheology and rapid volume expansion
- 2. Solids production net mass of wet cake leaving plant
 - a. Dewatering cake solids
 - b. Volatile solids destruction
- 3. Polymer Demand
- 4. Effects on cake quality in terms of odors

Effect on Solids Mass Balance

Effect on Solids Mass Balance

Orange County Project: Waste Management EBS Product (Food Waste)

- 1. Control Sludges only
- 2. 25% additional VS from food waste
- 3. 45% additional VS from food waste
- 4. 65% additional VS from food waste

Effect on Dewaterability

Effect on Solids Production

Net Wet Cake Mass Leaving the Plant

Net Change in Polymer Demand

Net Change in Cake Odors During Cake Storage

Acknowledgments

- This project is being funded by WERF, DC Water and HRSD
- Students working on the project:
 - Zwelani Ngwenya
 - Nick Bartek
 - Carmen Oo
 - Steven Beightol
 - Justin Vega
 - Chanda Singoyi
 - Dajah Massey

Questions?

Thank you for joining NEDR #10.

SPONSORED BY:

Ken Grauer Regional Sales Manager Vaughan Company, Inc. Phone: 360.249.4042 ext. 401

Ct. office 203-426-3264 Mobile 203-820-8011

Fax: 360.249.6155

E-mail:

KEN@chopperpumps.com

Visit our website at

www.chopperpumps.com

RSVP to info@ nebiosolids. org

Produced by:

www.nebiosolids.org /ne-digestionroundtable 603-323-7654 info@nebiosolids.org

First Friday each Quarter:

12:00 - 1:00 pm. Have lunch. Digest.

January 5, 2018: Gentlemen and -Women, Start Your Engines!

April 6: Where the Feedstocks Go <u>July 13</u> (2nd Friday!): How Food Scraps & Other Organics Work in Municipal Digesters: An Update on Co-Digestion Research (Professor Matt Higgins, Bucknell Univ.)

October 5: ADvancements Around the Region - Roundtable

Northeast Digestion Roundtable 2018

Quarterly webinars to share technical operations experiences & advance best practices regarding anaerobic digestion in this region.