

Phosphorus Availability from Organic Residuals

UMass Extension Symposium: Managing Phosphorus in Organic Residuals Applied to Soils November 2, 2016

Amy L. Shober Associate Professor and Extension Specialist University of Delaware

Topics for Discussion

- Survey of P in organic residuals
- Chemical speciation of P in residuals
- Fate of residual P in agricultural soils
 - Surface applied residuals
 - Incorporated/injected residuals
- Phosphorus dynamics following application of residuals

Managing Phosphorus in Organic Residuals Applied to Soils

SURVEY OF PHOSPHORUS IN RESIDUALS

What Do We Know About Phosphorus in Residuals?

- Wet chemical analysis provide some evidence of chemical "forms"
 - Examples:
 - EPA 3050 digestion ("Total" elements)
 - Water extractable P (WEP)
 - Sequential chemical fractionation (Operational fractions)
- Requires sample destruction

ELAWARE PROVIDENT

What Factors Affect P Solubility?

- 1. Chemical composition and treatment
- 2. Animal type and diet modification
- 3. Storage of materials (wet vs. dry)

Other Chemical Properties Control Phosphorus Solubility

FRSITYOF

Chemical Properties of Residuals

Source	Treatment	: Solids	WEP	Р	AI	Ca	Fe
		%		(g kg⁻¹		
	E	<u>Biosolids</u>					
BPR	Lime	31	0.82	17.8	5.84	78.5	4.12
Alkaline stabilization	AI	21	0.21	12.6	9.78	196	19.0
Alkaline stabilization	Fe	30	0.42	13.7	5.11	126	36.3
Anaerobic digestion	Fe	20	0.58	30.1	13.7	14.5	56.0
Anaerobic digestion	Fe	19	0.27	30.3	15.8	22.5	57.6
Anaerobic digestion	None	26	0.94	21.7	11.9	19	29.7
	<u>N</u>	<u>/lanures</u>					
Broiler	None	77	6.24	21.4	0.71	30.8	0.99
Broiler + Alum	AI	76	3.01	20.5	12.1	24.7	1.25
Dairy	None	18	2.32	4.30	0.87	73.6	2.12
Dairy	None	16	4.88	8.10	2.87	21.3	10.3

Fractionation of P in Residuals

Direct Speciation Techniques

- X-ray Diffraction (XRD): ID crystalline minerals
- Scanning Electron Microscopy (SEM) with Xray elemental spectrometry (EDXS): Mapping of elemental components
- ³¹P-Nuclear Magnetic Resonance (P-NMR): No ID of Fe-P species due to interference
- X-ray Absorption Near Edge Structure Spectroscopy (XANES): Limited access to facilities

³¹P-NMR Analysis of Manure

Shober et al. (2006)

XANES Linear Combination Fitting With Known Standards

ERSITYOF

AWARF

XANES Speciation of Biosolids P

VERSITYOF

XANES Speciation of Phosphorus

- PO4 Sorbed to Al Hydroxide
 Phytic Acid
- b-Tricalcium
 Phosphate
 Hydroxylapatite
- PO4 Sorbed to Ferrihydrite

Shober et al. (2006)

Other XANES Speciation Work

Digested biosolids - Ajiboye et al. (2007)

- 86% Variscite (AI-P)
- 14% Hydroxyapatite (Ca-P)

Broiler litter - Toor et al.

(2005) Add phytase to diet

- 15% aqueous P 13%
- 20% phytic acid 7%
- 65% dicalcium phosphate 80%

Diet Affects Total P in Broiler Litter

Industry Adoption of Phytase Reduced Manure P Load

ERSITYOF

University of Delaware Cooperative Extension

Managing Phosphorus in Organic Residuals Applied to Soils

BEHAVIOR OF P IN RESIDUALS-AMENDED SOILS

Runoff Losses from Surface Applied Residuals

Soil Properties Runoff P from Surface Applied Residuals

P in Runoff Incorporated Residuals is Affected by Soil and Source

ERSITYOF

Soil P Solubility Following Incorporation of Biosolids

Davidson clay

- Soil Test P = 27 mg kg⁻¹ (Mehlich 3)
- P Saturation = 0.02

Pamunkey sand

- Soil Test P = 134 mg kg⁻¹
- P Saturation = 0.18
- P Rate = 135 kg total P ha⁻¹

Predicting Short-term Solubility from Incorporated Biosolids

Soil Property	P Source	$r^2 (P < 0.01)$			
	Property	2 d	30 d	180 d	
DPS	None	0.69	0.77	0.79	
M3-PSR	None	0.65	0.74	0.74	
M3-P	None	0.54	0.62	0.57	
None	WEP	0.41	0.38	0.21	
None	WEP/TP ratio	0.49	0.34	0.21	
DPS	WEP	0.64	0.73	0.66	
M3-PSR	WEP	0.59	0.68	0.59	
M3-PSR	WEP/TP ratio	0.68	0.66	0.61	

Phosphorus Source Coefficients

Regional Default Values

Source Specific Values

Organic P Source	PSC
Inorganic P fertilizer	1.0
Swine slurry	1.0
Non-stabilized beef, dairy, poultry and other manures	0.8
Biological nutrient removal biosolids	0.8
Alum-treated poultry litters	0.5
Biosolids (except BNR)	0.4

PSC = 1.17 x WEP (%)

Source Coefficients

Subsurface Application – Benefits of Incorporation with Low Disturbance

Heavy Cover Crop

Permanent Pasture

Manure Application Method Affects Phosphorus Loss

ERSITYOF

P. Kleinman, personal communication

Subsurface Application of Solid Manures in No-Till/Pasture

Managing Phosphorus in Organic Residuals Applied to Soils

LONG-TERM FATE OF P IN RESIDUAL-AMENDED SOILS

Nutrient Content in Residuals

Residual Type	Total N	Total P ₂ O ₅	N:P ₂ O ₅ ratio
<u>Solids</u>	lbs/ton		
Beef cattle	12	5	2.40
Biosolids	95	104	0.91
Broiler litter	57	45	1.27
Dairy	10	4	2.50
<u>Liquids</u>	lbs/1,0	000 gal ———	
Dairy	28	13	2.15
Swine	27	19	1.42

ERSITYOF

Dr. Herschel Elliott, Penn State Univ.

P₂O₅ Loadings for Residual Application at N-based Rates

Relationship Between Soil Test P and Soluble P in Soils

Phosphorus Drawdown Following Manure Application

Dissolution of P from Soils Receiving Biosoilds or Fertilizer

- Anaerobically digested biosolids (Chicago) application for 32 yr (67.2 Mg ha⁻¹ yr⁻¹)
- Continuous flow desorption with 0.1 M NaNO₃
- 4 × slower dissolution of P from biosolids-amended soils

Dissolution of P from Soils Receiving Biosoilds or Fertilizer

XANES analysis on soils after dissolution experiment (Peak et al. 2012)

- Fertilizer: apatite (Ca-P) and adsorbed PO₄
- Biosolids: brushite (Ca-P), strengite (Fe-P), organic P
- Slow dissolution of Ca-P and Fe-P minerals

What is the Fate of Biosolids P in Acid Soils?

- <u>Lime Biosolids</u>: Slow solubilization of crystalline Ca-P
- <u>Fe Biosolids</u>: Ferrihydrite-P should remain stable; Excess ferrihydrite may sorb native soil P
- <u>Fe & Lime</u>: pH change = Ca-P solubilization;
 Ferrihydrite may act as P sorbent
- <u>BPR and Digested biosolids</u>: Ca-P solubilization; Al-P fairly stable

Summary

- Advanced techniques have improved our understanding of P speciation in residuals
- Treatment processes have large impact on P solubility and speciation
- Lower P solubility related to Fe- and limestabilization
- P losses controlled by residuals properties (surface applied); residuals and soil properties (incorporated)

Acknowledgements

- Research was conducted (in part) at the National Synchrotron Light Source (NSLS), Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Division of Materials Science and Division of Chemical Services
- Funding provided by Metropolitan Washington Council of Governments, Washington, DC, USA